Added value of high resolution RCM simulations and comparison with Statistical Downscaling Methods within the EURO-CORDEX framework

Ana Casanueva
ana.casanueva@meteoswiss.ch

Thanks to:
S. Herrera
J. Fernández
S. Kotlarski
J.M. Gutiérrez

Formerly at:
Dept. Applied Mathematics and Computer Sciences, University of Cantabria, Spain
www.meteo.unican.es
✓ Better resolved processes related to improved orography and land-sea mask (Pryor et al., 2012; Walther et al., 2013; Torma et al., 2015).

✗ No systematic/evident improvement of the high resolution (Kotlarski et al. 2014).

✗ Hi-res 0.11° simulations took ~ 100x the computing power of the standard 0.44° CORDEX resolution.

✗ There is no unique, best way to assess the added value (Prein et al., 2015).
What do we mean with “fair”?

- Spatial representativeness:

 RCMs
 Areal averages

 VS

 SDMs
 Point stations
 Areal averages
What do we mean with “fair”?

- **Spatial representativeness:**

 - **RCMs**
 - Areal averages

 - **SDMs**
 - Point stations
 - Areal averages

Motivation: fair comparison

- Unfair: RCMs vs SDMs
What do we mean with “fair”?

- Spatial representativeness:
 - RCMs: Areal averages vs SDMs: Point stations
 - SDMs usually calibrate the mean.

- Metrics used for validation should not have been calibrated in the training/tuning phase.

Motivation: fair comparison
What do we mean with “fair”?

- Spatial representativeness:

 RCMs
 Areal averages
 VS
 x unfair
 ✓ fair

 SDMs
 Point stations
 Areal averages

- Metrics used for validation should **not have been calibrated** in the training/tuning phase.

SDMs usually calibrate the **mean**. Are other parameters indirectly adjusted?
✓ **SQ1:** Do the high resolution RCMs add value with respect to the coarse ones before and/or after bias correction?

✓ **SQ2:** Is it fair to compare RCMs and SDMs?
<table>
<thead>
<tr>
<th>RCM</th>
<th>Institution</th>
<th>Spatial Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCLM</td>
<td>CLM Community</td>
<td>0.11° and 0.44°</td>
</tr>
<tr>
<td>HIRHAM</td>
<td>DMI, Denmark</td>
<td>0.11° and 0.44°</td>
</tr>
<tr>
<td>RACMO</td>
<td>KNMI, Netherlands</td>
<td>0.11° and 0.44°</td>
</tr>
<tr>
<td>RCA</td>
<td>SMHI, Sweden</td>
<td>0.11° and 0.44°</td>
</tr>
<tr>
<td>MPI</td>
<td>CSC, Germany</td>
<td>0.11° and 0.44°</td>
</tr>
<tr>
<td>WRF331A</td>
<td>CRPGL, Luxemburg</td>
<td>0.11° and 0.44°</td>
</tr>
<tr>
<td>WRF331F</td>
<td>IPSL/INERIS, France</td>
<td>0.11° and 0.44°</td>
</tr>
<tr>
<td>WRF331G</td>
<td>UC, Spain</td>
<td>0.44°</td>
</tr>
<tr>
<td>HadRM</td>
<td>MOHC, United Kingdom</td>
<td>0.44°</td>
</tr>
<tr>
<td>ALADIN</td>
<td>HMS, Hungary</td>
<td>0.44°</td>
</tr>
</tbody>
</table>
The comparison is carried out at the 0.44° grid, i.e. the *skillful scale* of the high resolution.

<table>
<thead>
<tr>
<th>RCM</th>
<th>Institution</th>
<th>Spatial Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCLM</td>
<td>CLM Community</td>
<td>0.11° and 0.44°</td>
</tr>
<tr>
<td>HIRHAM</td>
<td>DMI, Denmark</td>
<td>0.11° and 0.44°</td>
</tr>
<tr>
<td>RACMO</td>
<td>KNMI, Netherlands</td>
<td>0.11° and 0.44°</td>
</tr>
<tr>
<td>RCA</td>
<td>SMHI, Sweden</td>
<td>0.11° and 0.44°</td>
</tr>
<tr>
<td>MPI</td>
<td>CSC, Germany</td>
<td>0.11° and 0.44°</td>
</tr>
<tr>
<td>WRF331A</td>
<td>CRPGL, Luxemburg</td>
<td>0.11° and 0.44°</td>
</tr>
<tr>
<td>WRF331F</td>
<td>IPSL/INERIS, France</td>
<td>0.11° and 0.44°</td>
</tr>
<tr>
<td>WRF331G</td>
<td>UC, Spain</td>
<td>0.44°</td>
</tr>
<tr>
<td>HadRM</td>
<td>MOHC, United Kingdom</td>
<td>0.44°</td>
</tr>
<tr>
<td>ALADIN</td>
<td>HMS, Hungary</td>
<td>0.44°</td>
</tr>
</tbody>
</table>
Spain011/044 for Spain (Herrera et al., 2015):
EURO-CORDEX compliant grids

APGD (Alpine Precipitation Gridded Dataset, Isotta et al. 2013)
- daily accumulated precipitation, period 1971-2008
- 0.05° resolution regridded into the EURO-CORDEX grids

Observational data

- **Spain011/044 for Spain** (Herrera et al., 2015):
 - EURO-CORDEX compliant grids

- **APGD** (Alpine Precipitation Gridded Dataset, Isotta et al. 2013)
 - daily accumulated precipitation, period 1971-2008
 - 0.05° resolution regridded into the EURO-CORDEX grids

Wet-day mean precipitation

<table>
<thead>
<tr>
<th>0.11°</th>
<th>0.44°</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.94</td>
<td>7.60</td>
</tr>
<tr>
<td>8.47</td>
<td>7.99</td>
</tr>
</tbody>
</table>

Frequency of wet-days (above 1mm)

<table>
<thead>
<tr>
<th>0.11°</th>
<th>0.44°</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.35</td>
<td>27.23</td>
</tr>
<tr>
<td>26.85</td>
<td>28.15</td>
</tr>
</tbody>
</table>
Results: SDII Biases (DJF)

- Important biases for both resolutions.
- Depending on the RCM (and season, region, indicator), smaller biases are found in the 0.44° or 0.11AGG.
- Where should we look for added value?
Number of 011AGG improving on 0.44° (ALP, DJF)

Added value of the high-res. simulations in **spatial patterns** \((r, \text{RMSD})\).
Number of 011AGG improving on 0.44° (ALP, DJF)

No significant added value of high-res. after simple BC.
✓ SQ1: Do the high resolution RCMs add value with respect to the coarse ones before and/or after bias correction?

✓ SQ2: Is it fair to compare RCMs and SDMs?
Dynamical Downscaling:
ERA-Interim driven EURO-CORDEX simulations at 0.44°.

Statistical Downscaling over Spain (Perfect Prog):

<table>
<thead>
<tr>
<th>Label</th>
<th>Statistical Downscaling Method</th>
<th>Predictor Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Nearest neighbor (1 analogue)</td>
<td>SLP, T850, Q850</td>
</tr>
<tr>
<td>S2</td>
<td>100 WTs (k-means) simulation from Bernoulli + Gamma</td>
<td>SLP, T850, Q850</td>
</tr>
<tr>
<td>S3</td>
<td>GLM (Bernoulli) + GLM (Gamma) with 30 PCs</td>
<td>SLP, T850, Q850</td>
</tr>
<tr>
<td>S4</td>
<td>GLM (Bernoulli) + GLM (Gamma) with 4 nearest grid boxes</td>
<td>SLP, T850, Q850</td>
</tr>
<tr>
<td>S5</td>
<td>S4 conditioned on 10 WTs (k-means)</td>
<td>T850, Q850 (SLP for WTs)</td>
</tr>
</tbody>
</table>

ERA-Interim predictors
Spain044 predictands
5-fold cross-validation (1989-2008)
San-Martín et al. (2016)

A multidisciplinary approach to weather & climate

Santander Meteorology Group
A multidisciplinary approach for weather & climate

Pursuing a fair comparison

- **Mean** usually calibrated

- **D1** CCLM
- **D2** HIRHAM
- **D3** RACMO
- **D4** RCA
- **D5** HadRM
- **D6** ALADIN
- **D7** WRF 331F
- **D8** WRF 331G

- **S1** ANALOG
- **S2** WT-WG
- **S3** GLM (PCs)
- **S4** GLM (nns)
- **S5** GLM-WT (nns)

DJF

- **Correlation Coefficient**
- **MAE (mm)**
- **RMSD**

- **Standard deviation**

- **Mean** usually calibrated
Mean usually calibrated

90pWET:
Indirectly corrected by the mean
A multidisciplinary approach to weather & climate

Santander Meteorology Group

A multidisciplinary approach for weather & climate

http://www.meteo.unican.es

- Mean usually calibrated
- 90pWET: Indirectly corrected by the mean

Pursuing a fair comparison

Local Scaling (LS)

D1	CCLM
D2	HIRHAM
D3	RACMO
D4	RCA
D5	HadRM
D6	ALADIN
D7	WRF 331F
D8	WRF 331G
S1	ANALOG
S2	WT-WG
S3	GLM (PCs)
S4	GLM (nns)
S5	GLM-WT (nns)
Mean usually calibrated

90pWET:
Indirectly corrected by the mean

CDD: time sequence dependent
(not calibrated for any method)
A multidisciplinary approach to weather & climate

Santander Meteorology Group

Pursuing a fair comparison

- **Mean** usually calibrated
- **90pWET:** Indirectly corrected by the mean
- **CDD:** time sequence dependent (not calibrated for any method)

![Diagram](http://www.meteo.unican.es)
Conclusions

✓ SQ1: Do the high resolution RCMs add value with respect to the coarse ones before and/or after bias correction?
- **No**, in terms of *seasonal mean biases* in several climate indicators.
- **Yes**, there is added value in *spatial patterns*, BUT it is *not statistically significant* after bias correcting both simulations.

✓ SQ2: Is it fair to compare RCMs and SDMs?
- **No**, if the comparison is based on percentiles and intensity-dependent indicators due to their close relationship with the mean, usually affected by the *methods calibration*.
- **Yes**, if the comparison considers *non-optimized parameters* by either RCMs or SDMs, such as dry spells.
Conclusions

✓ SQ1: Do the high resolution RCMs add value with respect to the coarse ones before and/or after bias correction?

- **No**, in terms of *seasonal mean biases* in several climate indicators.
- **Yes**, there is added value in *spatial patterns*, BUT it is *not statistically significant* after bias correcting both simulations.

✓ SQ2: Is it fair to compare RCMs and SDMs?

- **No**, if the comparison is based on percentiles and intensity-dependent indicators due to their close relationship with the mean, usually affected by the *methods calibration*.
- **Yes**, if the comparison considers *non-optimized parameters* by either RCMs or SDMs, such as dry spells.

Thank you!
ana.casanueva@meteoswiss.ch
References:

Acknowledgements:

- Data providers: MeteoSwiss, AEMET and UC for the observational data provided for this work and the EURO-CORDEX modeling groups, as well as the Earth System Grid Federation.
