A Regional Coupled Model System to Examine Ocean-Atmosphere-Sea Ice, Ice Sheet and Permafrost Interactions in the Arctic

HIRHAM5 – HYCOM – CICE – PISM – GIPL – MIKE-SHE

O.B. Christensen

1. Danish Meteorological Institute, Denmark.
2. The Niels Bohr Institute, University of Copenhagen
3. University of Iceland
4. University of Alaska Fairbanks
5. Danish Hydraulic Institute
6. Technical University of Denmark
Motivation

• Arctic particularities (+ a bit Denmark-centric)
 – Atmosphere, Ocean, Cryosphere, Sub-surface
• Better representation of regional processes
• Limited abilities in parameterizing local processes
 – Permafrost
 – Glaciers
 – Ice sheets
 – Fjord circulation
 – Ground water
The model system

PISM: Parallel Ice Sheet Model (UAF)

HIRHAM5 MIKE SHE (DHI)

GIPL: permafrost model (UAF)

PISM: Parallel Ice Sheet Model (UAF)

Ocean / sea ice models: HYCOM–CICE (coupled for North Atlantic)
Regional Climate Model: HIRHAM5

• Combination of HIRLAM dynamical scheme with ECHAM5/& (+ add on) physics
 – CORDEX type and 5.5km horizontal resolution
 – 31 vertical levels in atmosphere
 – Time step of 120s/90s

• For Arctic
 – 5 snow/soil layers down to 10 m w.e.
 – Surface scheme calculates SMB with a surface energy balance scheme with retention and refreezing in snow pack
HIRHAM – MIKE-SHE

Coupled hydrological and climate model

- OpenMI coupling
- MIKE SHE
- WINDOWS - LINUX Communication link
- HIRHAM
- OpenMI
HIRHAM – MIKE-SHE

Input

Uncoupled mode MIKE SHE
Observation data

Windows workstation

Coupled mode MIKE SHE

Simulation

OpenMI – Linux proxy

Coupled exchange
PRECEP, RH, V, Rg, Ta & Ps
LE & Ts

One-way exchange
PRECEP, RH, V, Rg, Ta & Ps

Output

Uncoupled (MSDI)

Coupled one-way (MSDI)

Coupled two-way (TI/CV)

Uncoupled (HUV)

Linux HPC

HIRHAM

Coupled two-way (TI/CV)

PRECIP (mm) Precipitation
RH (%) Rel. humidity
V (m/s) Wind speed
Rg (W/m²) Global rad.
Ta (Deg. C.) Air temp.
Ps (hpa.) Surface pres.

Ts (Deg. C.) Surface temp.
LE (W/m²) Latent heat flux
H (W/m²) Sensible heat flux
G (W/m²) Soil heat flux
Q (m³/s) Discharge
Root mean square error

Distribution of the difference (coupled subtracted from uncoupled) in RMSE levels for a 365 day summation period.

Traditional Coupling

20 km resolution
Daily coupling
2006-2007 with 1 year spinup

Atmosphere
HIRHAM

Sea surface temperature

Wind, temperature, radiation, humidity, precipitation

Sea ice concentration

Ocean
HYCOM

Freshwater, heat and momentum

Sea ice
CICE
Ocean model: Hycom

- 3D currents (including tides), salinities and temperatures, sea surface height
- Fully coupled with sea ice model
- Operational setup: 10 km Arctic and North Atlantic, 29 vertical layers
- Setup for atm. coupling: 20 km Arctic
- High resolution setups for Godthåbsfjord (Greenland)
Sea Ice model: CICE

- Ice concentration, thickness, velocities, temperature, etc.
- Hibler-type elastic-viscous-plastic ice model
- Each grid cell has 5 ice thickness categories with 4 vertical layers for each, plus surface snow
- Fully coupled with ocean model, same resolution (10 or 20 km)
- For climate simulations: runs freely with a stable ice cover for several years
Experiments

- Era Interim
 - Hirham stand-alone
 - Hycom – CICE stand-alone

- Coupled
 - Hirham
 - Hycom – CICE
Sea ice concentration

HIRHAM forcing gives better results in Summer than ERA-Interim

Winter in coupled model is comparable

Greenland at 5 km resolution

- Resolution important to resolve fjords and ablation area
- Energy balance well represented
- Runoff very sensitive to albedo
Snowfall + Rain

Standard ECHAM5 subsurface

Snow, ice and water mass fractions

Snow
Ice
Water
(max 2% of snow mass)

Snowfall

Melt + rain

Runoff

Ice (-10°C)
Ice Sheet Modelling

- Forcing PISM ice sheet model with RCM output
- Surface elevation feedback
- Calving and ocean forcing neglected currently (but we’re working on it)
- Feedbacks between ocean and ice sheet (and atmosphere) may be important on longer timescales

Aðalgeirsdóttir et al., 2014
Calving in PISM
Full crevasses-depth criterion

• Nick et al, 2010

\[d_S + d_B = H \]
Driving Force
- HIRHAM (Regional Climate Model)
- EC-EARTH (Global Climate Model)
- Offline mode (Polar Portal)

STEP 1
Initializing (Driving model, if applicable)

STEP 2 (THE BIG LOOP)
Boundary conditions from model or file (offline)
- Access the needed fields
- Take feedback into account (Remapping)

STEP 3 (FINALIZE)
End of model
- Write Restart file of driving model

GIPL World
- Static 3D field set up
- NetCDF input/output

STEP 1 (STATIC)
Initializing Permafrost
- Geometry
- Soil characteristics
- Read initial or former restart state

STEP 2 (THE BIG LOOP)
Read actual driving forces
- Distribute 2D forcing fields from “Driving force” to individual columns
- Prepare remapping of permafrost into the “Driving Force” (Feedback)

STEP 3
Write (NetCDF)
- Restart/State file, diagnostics, stations

GIPL Column
- GIPL2 dedicated permafrost model

STEP 1
Initial columns

STEP 2 (THE BIG LOOP)
Permafrost calculation in an independent / separated column

STEP 3

“Column world”: essentially the original GIPL model.

“Driving force”: model (e.g. HIRHAM) or climatology, one-way or interactive

In the **“GIPL world”**, these join in a 3D setup; including model setup, reading / initializing / restart files / write out the results in netCDF.
Temperature at 1 m depth, 5 km run

<table>
<thead>
<tr>
<th>Year Range</th>
<th>Temperature [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980 - 1999</td>
<td>< -12</td>
</tr>
<tr>
<td>2046 - 2065</td>
<td>-12 -8</td>
</tr>
<tr>
<td>2080 - 2099</td>
<td>-8 -5</td>
</tr>
</tbody>
</table>

Active layer thickness, 5 km run

<table>
<thead>
<tr>
<th>Year Range</th>
<th>Active layer depth [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980 - 1999</td>
<td>Seasonal freezing</td>
</tr>
<tr>
<td>2046 - 2065</td>
<td>0.01 0.25</td>
</tr>
<tr>
<td>2080 - 2099</td>
<td>0.25 0.5</td>
</tr>
</tbody>
</table>

Danen et al. 2011
Summary

- HIRHAM – MIKE-SHE proof of concept works. Coupling improves model performance
- HIRHAM-HYCOM-CICE model system reproduces observed Arctic regional climate and sea ice concentration on seasonal to inter-annual timescales
- Ice sheet dynamics can be studied (resolution issues)
- The local characteristics of Greenland fjords with calving glaciers can be represented
- The role of permafrost characteristics can be assessed
- More complete feedback mechanisms can now be assessed.
Future Work

- Climate service for an Arctic community
- Longer simulation
- Past climate and future projections
- International collaboration/model intercomparison exercises (e.g. CORDEX, ISMIP6)
- Further model developments
 - Code harmonisation between different model elements
 - Spectral nudging (?)
- Ice sheet feedbacks and influences
 - Meltwater fluxes around Greenland from ice sheet + Arctic rivers
- Refine/improve coupling methods to increase process efficiency
-