CMIP5, CORDEX and higher resolution RegCM4 multimodel ensembles comparison of projected changes in climate zones over West Africa

Presented by:
Mouhamadou Bamba Sylla
WASCAL Competence Center, Ouaga, Burkina Faso

Contributors: Nellie Elguindi, Dominik Wisser, Filippo Giorgi
I/ Background and Motivation

Figure 1
I/ Background and Motivation ...

Ø IPCC (2013):
- Acceleration of future warming
- Large uncertainties in precipitation change

→ Combining temperature and Precipitation --- Climate Classification

Is there any consistent pattern that emerges for the future?

What's the added value by CORDEX?

www.wascal.org

West African Science Service Center on Climate Change and Adapted Land Use
Experiment and Data Description

<table>
<thead>
<tr>
<th>CMIP5</th>
<th>CanRCM4</th>
<th>RegCM4</th>
<th>CCLM4</th>
<th>RCA4</th>
<th>RACMO22T</th>
<th>HIRHAM5</th>
<th>HIRES-RegCM4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNU-ESM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO-Mk3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC-EARTH</td>
<td></td>
<td>&</td>
<td>&</td>
<td>&</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GFDL-ESM2M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>&</td>
</tr>
<tr>
<td>HadGEM2-ES</td>
<td></td>
<td>&</td>
<td>&</td>
<td>&</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPSL-CM5A-MR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIROC-ESM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI-ESM-MR</td>
<td></td>
<td>&</td>
<td>&</td>
<td>&</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CESM1-CAM5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nor-ESM1-M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNRM-CM5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CanESM2</td>
<td>&</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III/ Methods

Thornthwaite climate classification

- Thermal Factor: Potential Evapotranspiration

\[
P/PE - 1 \quad \text{if } P < PE
\]

- Moisture Factor:

\[
1 - PE/P \quad \text{if } P > PE
\]

<table>
<thead>
<tr>
<th>Thermal Classification</th>
<th>Thermal Type</th>
<th>Thermal Index</th>
<th>Moisture Classification</th>
<th>Moisture Type</th>
<th>Moisture Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Torrid</td>
<td>> 1,500</td>
<td>Saturated</td>
<td>0.66 – 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hot</td>
<td>1,200 – 1,500</td>
<td>Wet</td>
<td>0.33 – 0.66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Warm</td>
<td>900 – 1,200</td>
<td>Moist</td>
<td>0.00 – 0.33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cool</td>
<td>600 – 900</td>
<td>Dry</td>
<td>-0.33 – 0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cold</td>
<td>300 – 600</td>
<td>Semi-arid</td>
<td>-0.66 – -0.33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frigid</td>
<td>0 – 300</td>
<td>Arid</td>
<td>-1.00 – -0.66</td>
<td></td>
</tr>
</tbody>
</table>
IV/ Results

✓ Present-day: 1975-2004

- General pattern captured – Hamon more consistent

- Ensemble types and sizes are consistent:
 - Gulf of Guinea: mostly dry, few areas moist
 - Sahel: both semiarid and arid, few areas dry
 - West Africa: arid at 40% with 20% wet, dry and semiarid

- Added Value?

Sylla et al. 2016 [Climatic Change]
III/ Results

- Late 21st Century: 2080-2099 spatial patterns
 - Generalized torrid climates
 - More extended arid conditions
 - Shift and extension of semiarid band

Shifts more pronounced in HIRES — the role of resolution —

Sylla et al. 2016 [Climatic Change]

www.wascal.org

West African Science Service Center on Climate Change and Adapted Land Use
III/ Results

☑ Late 21st Century: 2080-2099 quantitative assessment

- Guinea: Increased semiarid
- Sahel: Increased arid
- West Africa: arid and semiarid
- Recession of wet, moist, dry
- Sensitive to number of models and bias
- Uncertainties

Sylla et al. 2015 [Climatic Change]
III/ Results

✓ Late 21st Century: 2080-2099 cause of the shifts

Change in moisture component

Ratio between $\Delta P / \Delta PE$

Temperature is the primary driver

www.wascal.org

West African Science Service Center on Climate Change and Adapted Land Use
Thank you for your attention