European-scale convection-resolving climate modeling

Christoph Schär1, David Leutwyler1, Nikolina Ban1, Oliver Fuhrer2, Michael Keller1,3, Xavier Lapillone2,3, Michael Keller1,3, Daniel Lüthi1, Linda Schlemmer1, Jürg Schmidli1,5, Thomas Schulthess4

1Atmospheric and Climate Science, ETH Zürich
2MeteoSwiss, Zürich, Switzerland
3Center for Climate Systems Modeling (C2SM), ETH Zürich
4Swiss Center for Scientific Computing (CSCS), Lugano
5Goethe University, Frankfurt

http://www.iac.ethz.ch/people/schaer
Reducing uncertainties with RCMs

Pessimism

- The envelope of uncertainty
- The cascade of uncertainty
- GCM
- RCM
- Impact model
- Local impacts
- Adaptation responses

“The range of uncertainty expands at each step of the process [and] spans such a wide range as to be practically unhelpful.”

(Wilby and Dessai 2010)

“Switching from global to regional models piles uncertainty on top of uncertainty.”

(Kerr 2011, Science)

Optimism

Analysis of RCM / GCM shows the opposite!

- RCMs systematically reduce GCM biases!
- RCMs decrease spread of projections!

ENSEMBLES: Kerkhoff et al., 2014, JAS
CORDEX: Sørland et al., Poster PA-104
Reducing uncertainties with explicit convection

- Switch off convection parameterization
- More closely based on first principles
Diurnal convection over Europe

17:45 (15:45 UTC)

(SEVIRI 10.8μm, June 30 till July 2, 2009; Michael Keller, ETH Zürich)
Convection and flash-flooding

Flooding in St. Gingolph, Valais
May 1, 2015

Flashflood in Wil (Switzerland)
June 15, 2015
Climate simulations at km-scale

Grell et al. 2000:
46x46 gridpoints at 1 km
14 months

Knote et al. 2010:
ca 200 x 150 gridpoints at 1.3 km
several decades

Kendon et al. 2012:
ca 400 x 300 gridpoints at 1.5 km
several decades

This presentation:
Ban et al. 2014, 2015:
500 x 500 gridpoints at 2.2 km
several decades
driven by ERA-Interim and
MPI-ESM-LR (RCP 8.5)

Leutwyler et al. 2016 (submitted, GMD):
1536 x 1536 gridpoints at 2.2 km
one decade completed
driven by ERA-interim
Domain size matters

The statistics of convective cell needs to develop within computational domain!

- A boundary zone of 100-200 km is affected by transition from parameterized to explicit convection.
- Very small domains damage the statistics of convection.
- Our simulations use wide lateral relaxation zone (50 grid points).

Lifecycle of a convective cell:
- Lifetime: 6h
- Propagation: 10 m/s
- Distance: 200 km

Schär, ETH Zürich
Validation of diurnal cycle

10-year long simulation driven by ERA-Interim;
Validation against 62 rain-gauge stations in Switzerland (JJA)

Alpine domain
2.2km (500x500x60)

Mean precipitation

OBS
Δ = 12 km
Δ = 2 km

Wet-hour frequency

Heavy precipitation

poor representation of diurnal cycle with Δ=12 km
dramatic improvement with Δ=2 km

(Ban et al. 2015, GRL)
Precipitation scaling with climate change

Extended Alpine region (JJA)

- No super-adiabatic scaling. Both daily and hourly precipitation are consistent with Clausius-Clapeyron scaling (6-7% / K).
- At hourly resolution, differences between $\Delta = 12$ km and $\Delta = 2$ km
- Assessment uses all-day percentiles

(Ban et al., 2015; Schär et al. 2016)
European-scale simulations

GPU-version of COSMO model

- Large effort led by O. Fuhrer (MeteoSwiss)
 - runs entirely on GPUs
 - dynamical core rewritten in C++
 - parameterizations use OpenACC
- Also used for operational NWP (Δ=1 km)
- Runs on Piz Daint (Cray XC30, CSCS)

Use for European-scale climate simulations
(PhD of David Leutwyler)

- Δ=2.2 km, 1536 x 1536 x 60 grid points
- Able to run 1 year in 5 days wall-clock time
- 10 years driven by ERA-Interim

Oliver Fuhrer (MeteoSwiss), Xavier Lapillone (C2SM / ETH), et al.;
Thomas Schulthess (CSCS), et al.;
David Leutwyler (PhD ETH), et al.
Cray 1 versus Kepler GPU

Cray 1

- Performance: 160 MFlops
- Main memory: 1 MWord
- Weight: 5.5 tons (Cray-1A)
- Cost: 10 Million $

Kepler GPU

- Peak performance: 1311 GFlops
- Memory: 960 + 1536 MByte L1/2 Cache
- Weight: about 0.5 kg
- Prize: about 3000 $ (GK110)

GPU = Graphics Processing Unit

Schär, ETH Zürich
Piz Daint = 5272 Nodes

1 Node = 1 GPU & 1 CPU
1 GPU = 15 SMXs
1 SMX = 192 CCs & 64 DPs
1 CC
1 DP

CUDA Core
Double Precis. Unit

Schär, ETH Zürich

Compute Challenge
Emerging hardware architectures are highly heterogeneous
Kyrill
Jan 18, 2007, 18 UTC
Δ = 12 km

mm/h
Kyrill
Jan 17, 2007, 12 UTC
Δ = 2 km

mm/h
Kyrill

Jan 18, 2007, 18 UTC
Δ = 50 km

mm/h
Simulations at 12 and 2 km

David Leutwyler, ETH Zurich, animations via crCLIM: http://www.c2sm.ethz.ch/research/crCLIM
Simulation of propagating cold pools

Schär, ETH Zürich

Rotunno et al. 1988

Gravity Currents and Cold Pools

Δx = 2 km

Δx = 12 km

Animation download (CC-BY): dx.doi.org/10.3929/ethz-a-010619320

What is feasible today?

- **Decade-long European-scale domain simulations**
 - Able to run 1 day in 20 minutes (1 year in 5 days)
 - Domain-decomposition with 12 x 12 domains, each running on a GPU/CPU node (144 nodes, 2.8% of PizDaint)

- **CORDEX simulations – Strong scaling: Increase # of nodes for given domain**
 - Resolution of 12 km, 150 year long, domain covering Europe. Able to run 1 year in 18 hours on 10 nodes (poor strong scaling)
 - On dedicated PizDaint (5272 nodes): Large 500-member ensemble feasible

- **Global simulations – Weak scaling: Increase domain size with # of nodes**
 - Exploit excellent weak scaling on dedicated Piz Daint (5272 nodes): At a resolution of 2.8 km, whole planet could be covered.
 - In principle, global convection-resolving AGCM simulations feasible today!
 - Would require online analysis (memory bandwidth is most critical bottle neck).

See project crCLIM at ETH: http://www.c2sm.ethz.ch/research/crCLIM.html
References

Animations: can be downloaded via crCLIM website at http://www.c2sm.ethz.ch/research/crCLIM

Schär, ETH Zürich