High Resolution Regional Climate Simulations of the Water Cycle over CONUS Including Potential Climate Change Scenarios

Ethan Gutmann and Roy Rasmussen
Sponsored by NCAR Water System Program

Team members:
Changhai Liu, Kyoko Ikeda, Mike Barlage, Fei Chen, Martyn Clark, Aiguo Dai, Jimy Dudhia, David Gochis, Ethan Gutmann, Andrew Newman, Andreas Prein, Gregory Thompson, David Yates, and many University Collaborators
Science Objectives of the CONUS Project

• To assess future changes of snowfall/snowpack and associated hydrological cycles

• To examine precipitation changes under the CMIP5 projected global warming, including extremes, warm-season precipitation in central US and hurricanes

• To provide the community a dataset for high resolution studies of regional climate change and impact studies
Numerical Approach

- WRF model with a 4-km-spacing $1360 \times 1016 \times 51$ points!

- Physics parameterizations:
 1. Thompson aerosol-aware microphysics
 2. Noah-MP LSM
 3. YSU PBL
 4. RRTMG radiation
 5. Weak spectral nudging

- 2000-2013 (ERA-I) Forcing
- Future forcing using “PGW”
 - Pseudo-Global Warming
 - CMIP5 (19) model ensemble mean change
 - (2071-2100) – (1975-2005)
 - Eliminates the internal variability problem
What is PGW approach?

- Compute 30-year CMIP5 19 model ensemble monthly mean
- Compute mean changes – T, U, V, Qv, GPH
- Add change signal to the 6-hrly ERA-I data

- No change in storm tracks.
- Same transient spectra. (weather)
Efforts to improve WRF high-resolution climate simulations

1. Computing requirements
 - NCAR Strategic Capability proposals with a total award of 42M core hours
2. WRF model improvements for CONUS project made over last two years
 - Significant model deficiencies found in test runs

<table>
<thead>
<tr>
<th></th>
<th>Improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noah-MP LSM</td>
<td>1. Rain-snow partitioning</td>
</tr>
<tr>
<td></td>
<td>2. vegetation-dependent snow fraction/melt curves</td>
</tr>
<tr>
<td></td>
<td>3. Allowing snow to be present at above 0°C</td>
</tr>
<tr>
<td></td>
<td>4. heat advection by precipitation</td>
</tr>
<tr>
<td></td>
<td>5. Bug fix for canopy snow unloading and snow density</td>
</tr>
<tr>
<td>Microphysics</td>
<td>Aerosol emission refinement</td>
</tr>
<tr>
<td>lake water</td>
<td>Based on a combination of SST & skin temperature</td>
</tr>
<tr>
<td>temperature**</td>
<td>testing and parameter adjusting</td>
</tr>
<tr>
<td>spectral nudging</td>
<td>skin-temperature based approach for PGW</td>
</tr>
<tr>
<td>sea ice/SST</td>
<td></td>
</tr>
</tbody>
</table>
Efforts to improve WRF high-resolution climate simulations

3. Bug fix in WRF model associated with long-term high-resolution integrations

- deficient treatment of lateral boundary conditions
- bug in diagnosis module
Winter cold biases from test runs
Compared to PRISM observations

December 2000
Results after LSM improvement: vegetation-dependent snow fraction/melt curves

December 2000
Comparison of monthly precipitation between WRF and PRISM for 2008
PRISM observations averaged over 2001-2008

Precipitation (mm/day)

Precipitation bias (mm/day)

Courtesy of Andreas Prein
PRISM observations averaged over 2001-2008

2 m temperature (°C)

2 m temperature bias (°C)

Courtesy of Andreas Prein
Model Evaluation at SNOTEL Sites

SNOTEL site at Brooklyn Lake, WY

1: Pacific Northwest
2: Sierra Nevada
3: Blue Mts
4: Idaho/w. MT
5: NW WY–S. MT
6: Utah
7: Colorado

Snow gauge
Snow pillow
SNOTEL vs WRF at SNOTEL sites: 9-year climatology

1: Pacific Northwest (105)
2: Sierra Nevada (31)
3: Blue Mnts (28)
4: ID, W. MT (110)
5: NW WY, S. MT (102)
6: UT (95)
7: CO (130)

All SNOTEL sites (816)

PRCP bias: -2% – 9%
SWE bias: -10% – -40%
Preliminary results from ongoing PGW simulation

- Seasonal/annual surface temperature changes
- Seasonal/annual precipitation/rainfall changes
- Snowfall and Snowpack changes over western mountains
8-year Climatology of Surface Temperature Change (PGW – CTRL)

JAN-MAR

APR-JUN

JUL-SEP

OCT-DEC
Annual Precipitation

CTRL Annual 8-yr climatology

PGW Annual 8-yr climatology

Percent Change : Annual 8-yr climatology

PGW - CTRL : Annual 8-yr climatology
Snowfall and Rainfall Climatology

CTRL

PGW

PGW - CTRL

Snowfall

Rainfall

CTRL

PGW

PGW - CTRL

Annual Total (mm)

PGW – CTRL (mm)
IKE
Wind: Curr=41.1m/s PGW=45.7m/s
Radius: Curr=133.9km PGW=140.4km
Summary

• Four CONUS simulations
 • ERA-I forced & PGW
 • two CMIP5-forced runs.

• Unique features including
 • 10+ yrs Continental scale convection-permitting integrations, and
 • use of CMIP5 model ensemble mean forcing.

• Efforts to improve model skills.

• Impressive performance for precipitation and temperature
 • except for dry and warm bias in Central US.

• PGW shows
 • increasing annual precipitation/rainfall over most of CONUS
 • reduced snowfall/snowpack
 • suppressed summer convection in central US.
Thank you.

Questions?
SWE underprediction from test runs

- capability for snow being present at above 0°C
- microphysics-based rain-snow partitioning
Overprediction of lake precipitation due to warm water temperature from test runs

October 2000
Result after lake temperature fix:
used daily mean skin-temperature for lake water

October 2000
Summer warm biases from test runs

August 2001
Results with spectral nudging plus default option changes in LSM

August 2001
8-year Climatology of Surface Temperature Change

(PGW – CTRL)

Annual Temperature Change
Seasonal Precipitation: Jan – Mar
Seasonal Precipitation: Apr – Jun

CTRL AMJ 8-yr climatology

PGW AMJ 8-yr climatology

Percent Change : AMJ 8-yr climatology

PGW - CTRL : AMJ 8-yr climatology
Seasonal Precipitation: Jul – Sep

CTRL JAS 8-yr climatology

PGW JAS 8-yr climatology

Percent Change: JAS 8-yr climatology

PGW - CTRL: JAS 8-yr climatology
OUTLINE

1. Overview of the Project
 - Motivation & objectives
 - Methodology
 - Numerical Experiments
 - Challenges and efforts

2. Preliminary Results
 - 9-yr control simulation
 - 8-yr PGW simulation

3. Ongoing Work and Future Plan
Numerical Experiments

- **EXP1**: Retrospective/Control simulation
 - forced with ERA-I reanalysis
 - Completed March 2016

- **EXP2**: Pseudo-Global Warming (PGW) simulation
 - forced with ERA-I plus climate perturbation
 - $\Delta_{\text{RCP8.5}} = \text{CMIP5}_{2071-2100} - \text{CMIP5}_{1976-2005}$
 - 13-year integration
 - Completed April 2016